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ABSTRACT
The Classical Physics Fundamentals Handbook was developed to assist

nuclear facility operating contractors provide operators, maintenance personnel, and

the technical staff with the necessary fundamentals training to ensure a basic

understanding of physical forces and their properties. The handbook includes

information on the units used to measure physical properties; vectors, and how they

are used to show the net effect of various forces; Newton's Laws of motion, and how

to use these laws in force and motion applications; and the concepts of energy,

work, and power, and how to measure and calculate the energy involved in various

applications. This information will provide personnel with a foundation for

understanding the basic operation of various types of DOE nuclear facility systems

and equipment.

Key Words: Training Material, Classical Physics, Vectors, Newton's Laws, Energy,
Work, Power
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CLASSICAL PHYSICS OVERVIEW
Department of Energy Fundamentals: Classical Physics was prepared as an

information resource for personnel who are responsible for the operation of the
Department's nuclear facilities. A basic understanding of classical physics is necessary
for DOE nuclear facility operators, maintenance personnel, and the technical staff to
safely operate and maintain the facility and facility support systems. The information in
the handbook is presented to provide a foundation for applying engineering concepts to
the job. This knowledge will help personnel more fully understand the impact that their
actions may have on the safe and reliable operation of facility components and
systems.

Classical Physics consists of five modules that are contained in one volume. The
following is a brief description of the information presented in each module of the
handbook.

Module 1 - Unit Systems
This module presents the concept of unit systems for the fundamental
dimensions of mass, length, and time used in physics. Additionally, derivation of
units and the conversion of these units is presented.

Module 2 - Vectors
This module contains information to aid in the determination of the net effect of
various forces on an object and includes graphing vectors, adding vectors, and
determining component vectors of a resultant vector.

Module 3 - Force and Motion
This module presents Newton's Laws of force and motion.

Module 4 - Application of Newton's Laws
This module describes the effect of static and dynamic forces on objects and
includes a discussion of the forces commonly encountered in a nuclear facility.

Module 5 - Energy, Work, and Power
This module defines energy, work, and power, identifies their various forms, and
discusses the conservation of energy, work, and power including the
measurement and calculation of each.

The information contained in this document is by no means all encompassing. An attempt to
present the entire science of classical physics would be impractical. However, Classical
Physics does present enough information to provide the reader with a fundamental
knowledge level sufficient to understand the advanced theoretical concepts presented in
other subject areas, and to better understand basic system and equipment operations.
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TERMINAL OBJECTIVE

1.0 Given appropriate conversion tables,CONVERT betweenEnglish and SI system units of
measurement.

ENABLING OBJECTIVES

1.1 DEFINE the threefundamental dimensions: length, mass, and time.

1.2 LIST standard units of thefundamental dimensions for each of the following systems:
a. International System of Units(SI)
b. English System

1.3 DIFFERENTIATE between fundamental and derived measurements.

1.4 Given appropriate conversion tables,CONVERT betweenEnglish and SI units oflength.

1.5 Givenappropriate conversion tables,CONVERT betweenEnglish and SI units of mass.

1.6 CONVERT time measurementsbetween the following:
a. Years
b. Weeks
c. Days
d. Hours
e. Minutes
f. Seconds
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FUNDAMENTAL DIMENSIONS

Length, mass, and time are the three fundamental dimensions onwhich the
measurement of all physical quantities is dependent.

EO 1.1 DEFINE the three fundamental dimensions: length,
mass, and time.

EO 1.2 LIST standard units of the fundamentaldimensions for
each of the following systems:
a. International System of Units (SI)
b. English System

EO 1.3 DIFFERENTIATE between fundamental and derived
measurements.

Fundamental Dimensions

Physics is a science based upon exact measurement ofphysicalquantitiesthat are dependent upon
three fundamental dimensions. The three fundamental or primary dimensions aremass, length,and
time. These threefundamental units must beunderstood in order to lay the foundation for the
manyconcepts andprinciples presented in this material.

Mass

Massis the amount of material present in an object. This measurement describes "how
much" material makes up an object. Often, mass andweight are confused asbeing the
same because theunits used to describe them aresimilar. Weight (a derived unit, not
a fundamental unit) is a measurement thatdescribes the force of gravity on the "mass"
of an object.

Length

Lengthis the distance between two points. The concept oflength is needed to locate
the position of a point in space and thereby describe thesize of a physicalobject or
system. When measuring a length of pipe, the ends of the pipe are the two points and
the distance between the two points is the length. Atypical unit used to describe
length is the"foot."
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Time

Timeis the duration between two instants. The measurement oftime is described in
units of seconds, minutes, orhours.

Units

A number alone is not sufficient to describe aphysicalquantity. For example, to saythat "a
pipe must be 4 long to fit" has no meaning unless a unit ofmeasurement for length is also
specified. By adding units to the number, it becomes clear, "a pipe must be 4 feet long to fit."

The unit defines the magnitude of ameasurement. If we have a measurement of length, the
unit used to describe the length could be afoot or yard, each ofwhich describes a different
magnitude of length. The importance ofspecifying the units of ameasurement for a number
used to describe aphysicalquantity is doubly emphasized when it is notedthat the same
physical quantity may be measured using a variety of different units. For example, length may
be measured in meters, inches, miles, furlongs, fathoms, kilometers, or a variety ofotherunits.

Units of measurement have been established for use with each of the fundamental dimensions
mentioned previously. The following section describes the unit systems in usetoday and
providesexamples of unitsthat are used ineach system.

Unit Systems

There are two unit systems in use at thepresenttime, English units andInternational System
of Units (SI).

In the United States, the English system is currentlyused. This systemconsists of various units
for each of the fundamental dimensions or measurements. These units are shown in Table 1.



Unit Systems FUNDAMENTAL DIMENSIONS

Rev. 0 Page 3 CP-01

TABLE 1
English Units of Measurement

Length Mass Time

 Inch  Ounce  *Second

 * Foot  * Pound  Minute

 Yard  Ton  Hour

 Mile  Day

 Month

 Year

* Standardunit of measure

The English system is presentlyused in thefield of engineering andthroughout the United
States. The foot-pound-second (FPS)system is the usual unit systemused in the U.S. when
dealing with physics.

Over the years therehave been movements tostandardize units sothat all countries,including
the United States,will adopt the SIsystem. The SI system is made up of two related systems,
the meter-kilogram-second (MKS)system and thecentimeter-gram-second (CGS)system.

The MKS and CGS systems are much simpler to usethan theEnglish systembecause they use
a decimal-based system in which prefixes areused to denote powers of ten. Forexample, one
kilometer is 1000 meters, and one centimeter is one one-hundredth of a meter. TheEnglish
system has odd units of conversion. For example, amile is 5280 feet, and aninch is onetwelfth
of a foot.
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The MKS system isusedprimarily for calculations in thefield of physics whileboth the MKS
and CGS systems areused in thefield of chemistry. Theunits for each of these systems are
shown in Tables 2 and 3 below.

TABLE 2
MKS Units of Measurement

Length Mass Time

 Millimeter  Milligram  * Second
 * Meter  Gram  Minute
 Kilometer  * Kilogram  Hour
  Day

 Month
 Year

* Standardunit of measure

TABLE 3
CGS Units of Measurement

Length Mass Time

 * Centimeter  Milligram  * Second
 Meter  * Gram  Minute
 Kilometer  Kilogram  Hour

 Day
 Month
 Year

* Standardunit of measure
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The following tables show approximate lengths, masses, andtimes for somefamiliar objects or
events.

TABLE 4
Approximate Lengths of Familiar Objects

Object Length
(meters)

Diameter of Earth Orbit Around Sun 2 x 10

FootballField 1 x 10

Diameter ofDime 2 x 10

Thickness of Window Pane 1 x 10

Thickness ofPaper 1 x 10

11

2

-2

-3

-4

TABLE 5
Approximate Masses of Familiar Objects

Object Mass
(kilograms)

Earth  6 x 10

House  2 x 10

Car  2 x 10

Quart of Water  1

Dime  3 x 10

Postage Stamp  5 x 10

24

5

3

-3

-8
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TABLE 6
Approximate Times of Familiar Events

Event Time
(seconds)

 Age of Earth  2 x 10

 HumanLife Span  2 x 10

 Earth Rotation Around Sun  3 x 10

 Earth Rotation AroundAxis  8.64 x 10

 Time Between Heart Beats  1

17

9

7

4

Derived Measurements

Most physical quantities have unitsthat arecombinations of thethreefundamentaldimensions
of length, mass, and time. When these dimensions or measurements are combined, theyproduce
what are referred to asderivedunits. This meansthat they have been "derived" from one or
more fundamental measurements. These combinations of fundamental measurements can be the
combination of the same or different units. The following are examples ofvarious derived units.

Ar ea

Area is the product of two lengths (e.g., width xlength for a rectangle);thus, it has
the units of lengthsquared, such as squareinches (in. ) orsquare meters (m ).2 2

1 m x 1 m = 1 m2

4 in. x 2 in. = 8 in.2

Volume

Volume is the product of three lengths (e.g.,length x width xdepth for a rectangular
solid); thus, it has the units of length cubed, such as cubic inches (in. ) or cubicmeters3

(m ). The MKS and CGS unit systems have a specific unit for volume called the liter3

(l). One liter is equal to1000 cubic centimeters (1 l = 1000 cm ).3

2 in. x 3 in. x 5 in. = 30 in.3
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Density

Density is a measure of themass of anobject per unitvolume;thus, it hasunits of
mass divided by lengthcubed such as kilograms per cubic meter (kg/m ) or pounds3

per cubic foot (lbs/ft ).3

15 lbs/5 ft = 3 lbs/ft3 3

Velocity

Velocity is the change in length per unit time;thus, it hasunits such as kilometers per
hour (km/h) or feet per second (ft/s).

Acceleration

Acceleration is a measure of the change in velocity or velocity per unittime; thus, it
has units such as centimeters per second per second (cm/s ) or feet per second per2

second (ft/s ).2



FUNDAMENTAL DIMENSIONS Unit Systems

CP-01 Page 8 Rev. 0

Fundamental Dimensions Summary

The fundamental measurements consist of:

C Length - distance between two points
C Mass - amount of material in an object
C Time - duration between two instants

The English system of units is based on the following standard units:

C Foot
C Pound
C Second

The SI system of measurement consists of the following standard units:

   MKS         CGS

C  Meter C  Centimeter
C  Kilogram C  Gram
C  Second C  Second

Derived units are made up of a combination of units to describe various
physical quantities.  For example:

C Area - square inches (in. )2

C Volume - cubic inches (in. ) or liters3

C Density - mass per volume (lb/in. )3

Summary

The mainpoints of thischapter aresummarized below.
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UNIT CONVERSIONS

In order to apply measurements from the SI system to the English system, it is
necessary to develop relationships ofknown equivalents (conversionfactors).
These equivalents can then be used to convert from the given units of measure to
the desired units of measure.

EO 1.4 CONVERT between English and SI units of length.

EO 1.5 CONVERT between English and SI units of mass.

EO 1.6 CONVERT time measurements between the following:
a. Years
b. Weeks
c. Days
d. Hours
e. Minutes
f. Seconds

Personnel at DOE nuclear facilties areoften exposed to both theEnglish and SI systems of units in
their work. In some cases, the measurementsthat are taken or readfrom an instrumentwill be
different from those required by a procedure.This situation will require the conversion of
measurements to those required by theprocedure.

Conversion Factors

Conversion factors are based on relationships of equivalentsfrom different measurement systems.
These conversion factors are then applied to the givenmeasurement in order to convert it to the units
that are required. The equivalent relationships between different units of measurement are defined in
conversion tables. Someexamples from conversion tables are given below.

C 1 yard = .9144 meters
C 1 kilogram = 2.205poundsmass (lbm)
C 1 hour = 3600 seconds



1 ft
1 ft

'

12 inches
1 foot

or 1 '

12 inches
1 foot

12 inches
1 foot
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A typical conversion table is shown in Table 7.

TABLE 7
Conversion Table

Length 1 yd = 0.9144 m
12 in. = 1 ft
5280 ft = 1mile
1 m = 3.281 ft
1 in. = 0.0254 m

Time 60 sec = 1 min
3600 sec = 1 hr

Mass 1 lbm = 0.4535 kg
2.205 lbm = 1 kg
1 kg = 1000 g

Area 1 ft = 144 in.2 2

10.764 ft = 1 m2 2

1 yd = 9 ft2 2

1 mile = 3.098 X 10 yd2 6 2

Volume 7.48 gal = 1 ft3

1 gal = 3.785 l (liter)
1 l = 1000 cm3

Unit Conversion

To convertfrom one measurement unit toanother measurementunit (for example, toconvert 5 feet
to inches), first select theappropriateequivalent relationship from the conversion table(for this
example, 1 foot = 12 inches). Conversion isbasically a multiplication by 1. We can dividebothsides
of the equation 1 ft = 12inches by 1foot to obtain the following.

Then

The relationship is a conversionfactorwhich we can use in our example toconvert

5 feet to inches.



1 '

12 inches
foot

5 feet ' 5 feet × 12 inches
ft

' 5 × 12 inches' 60 inches.

desired units
present units

1 '

3.281 ft
1 m

(795 m) x 3.281 ft
1 m

'

795 m
1

x 3.281 ft
1 m

Unit Systems UNIT CONVERSIONS
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Using the example, 5feet is to be converted toinches. Startwith the obvious equation

5 ft = 5 ft, and multiply theright hand side by .

5 feet = 5 feet x 1

Thus, 5 feet is equivalent to 60 inches.

Steps for Unit Conversion

Using the following example, we will step through the process for converting from agiven set of units
to a desired set of units.

Convert 795 m to ft.

Step 1. Select the equivalent relationship from the conversion table (Table 7).

1 meter = 3.281 ft

Step 2. Divide toobtain the factor 1 as a ratio .

Step 3. Multiply the quantity by the ratio.

= 795 x 3.281 ft

= 2608.395 ft



1' 3.098 x 106 sq yd
1 sq mile

(2.91 sq miles) x 3.098 x 106 sq yd
1 sq mile

' 9.015 x 106 sq yd

1' 9 sq ft
1 sq yd

(9.015 x 106 sq yd) x 9 sq ft
1 sq yd

' 8.114 x 107 sq ft

1' 1 sq m
10.764 sq ft
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CP-01 Page 12 Rev. 0

If an equivalent relationship between thegiven units and thedesired units cannot be found in the
conversion tables, multipleconversion factors must be used. The conversion is performed inseveral
steps until the measurement is in the desired units. The givenmeasurement must bemultiplied by each
conversionfactor (ratio). After thecommon units have been canceledout, theanswerwill be in the
desired units.

Example: Convert 2.91 sqmiles to sqmeters.

Step 1. Select the equivalent relationship from the conversion table. Becausethere is
no direct conversion shown for squaremiles to square meters,multiple
conversions will be necessary. For this example the following conversionswill
be used.

sq miles to sq yds to sq ft to sq m

1 sq mile = 3.098 x 10 sq yd6

1 sq yd = 9 sq ft

10.764 sq ft = 1 sq m

Step 2. Express therelationship as aratio (desired unit/present unit).

Step 3. Multiply the quantity by the ratio.

Step 4. Repeat the steps until the value is in thedesired units.



(8.114 x 107 sq ft) x 1 sq m
10.764 sq ft

'

(8.114 x 107) (1 sq m)
10.764

8.114 x 107 sq m
10.764

(2.91 sq miles) x 3.098 x 106 sq yd
1 sq mile

x 9 sq ft
1 sq yd

x 1 sq m
10.764 sq ft

(2.91) x (3.098 x 106) (9) (1 sq m)
10.764

8.114 x 107 sq m
10.764

Unit Systems UNIT CONVERSIONS
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=

= 7.538 x 10 sq m6

It is possible toperform all of the conversions in asingleequation as long as all of theappropriate
conversion factors areincluded.

=

=

= 7.538 x 10 sq m6

Example:

A Swedish firm isproducing avalvethat is to be used by anAmerican supplier. The Swedish firm
uses the MKS system for allmachining. Toconform with the MKS system, howwill the following
measurements be listed?

Valve stem 57.20 in.

Valve inlet andoutlet
I.D. 22.00 in.
O.D. 27.50 in.

Solution:

Valve stem
57.20 in. x 0.0254m/in. = 1.453 m

Valve inlet andoutlet
I.D. 22.00 x 0.0254 = 0.559 m
O.D. 27.50 x 0.0254 = 0.699 m
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TABLE 8
Conversion Factors

CONVERSION FACTORS FOR COMMON UNITS OF MASS

  g      kg         t           lbm      

1 gram = 1 0.001 10 2.2046 x 10-6 -3

1 kilogram = 1000 1 0.001 2.2046

1 metric ton (t) = 10 1000 1 2204.66

1 pound-mass (lbm) = 453.59 0.45359 4.5359 x 10 1-4

1 slug = 14,594 14.594 0.014594 32.174

CONVERSION FACTORS FOR COMMON UNITS OF LENGTH

     cm          m         km        in.     ft          mi      

1 centimeter = 1 0.01 10 0.39370 0.032808 6.2137 X 10-5 -6

1 meter = 100 1 0.001 39.370 3.2808 6.2137 x 10-4

1 kilometer = 10 1000 1 39,370 3280.8 0.621375

1 inch = 2.5400 0.025400 2.5400 x 10 1 0.083333 1.5783 x 10-5 -5

1 foot = 30.480 0.30480 3.0480 x 10 12.000 1 1.8939 x 10-4 -4

1 mile = 1.6093 x 10 1609.3 1.6093 63,360 5280.0 15

Examples of common conversionfactors are shown in Table 8.
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TABLE 8 (Cont.)
Conversion Factors

CONVERSION FACTORS FOR COMMON UNITS OF TIME

   sec       min        hr    

1 second = 1 0.017 2.7 x 10-4

1 minute = 60 1 0.017

1 hour = 3600 60 1

1 day = 86,400 1440 24

1 year = 3.15 x 10 5.26 x 10 87607 5

    day       year    

1 second = 1.16 x 10 3.1  x 10-5 -8

1 minute = 6.9  x 10 1.9 x 10-4 -6

1 hour = 4.16 x 10 1.14 x 10-2 -4

1 day = 1 2.74 x 10-3

1 year = 365 1
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Unit Conversion Summary

C Conversion Tables list equivalent relationships.

C Conversion Factors are obtained by dividing to get a multiplying factor (1).

Unit Conversion Steps

C Step 1 - Select the equivalent relationship from the conversion table.

C Step 2 - Express the relationship as a conversion factor.

C Step 3 - Multiply the given quantity by the conversion factor.

Summary

Unit conversion is summarized below.
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TERMINAL OBJECTIVE

1.0 Using vectors, DETERMINE  the net force acting on an object.

ENABLING OBJECTIVES

1.1 DEFINE  the following as they relate to vectors:
a. Scalar quantity
b. Vector quantity
c. Vector component
d. Resultant

1.2 DETERMINE  components of a vector from a resultant vector. 

1.3 ADD vectors using the following methods:
a. Graphical
b. Component addition
c. Analytical
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Figure 1  Vector Reference Axis

SCALAR AND VECTOR QUANTITIES

Scalars are quantities that have magnitude only; they are independent of direction.
Vectors have both magnitude and direction.  The length of a vector represents
magnitude.  The arrow shows direction.

EO 1.1 DEFINE the following as they relate to vectors:
a. Scalar quantity
b. Vector quantity

Scalar Quantities

Most of the physical quantities encountered in physics are either scalar or vector quantities.  A
scalar quantity is defined as a quantity that has magnitude only.  Typical examples of scalar
quantities are time, speed, temperature, and volume.  A scalar quantity or parameter has no
directional component, only magnitude.  For example, the units for time (minutes, days, hours,
etc.) represent an amount of time only and tell nothing of direction.  Additional examples of
scalar quantities are density, mass, and energy.

Vector Quantities

A vector quantity is defined as a quantity that has both magnitude and direction.  To work with
vector quantities, one must know the method for representing these quantities.

Magnitude, or "size" of a vector, is also
referred to as the vector's "displacement."  It
can be thought of as the scalar portion of the
vector and is represented by the length of the
vector.  By definition, a vector has both
magnitude and direction.  Direction indicates
how the vector is oriented relative to some
reference axis, as shown in Figure 1.

Using north/south and east/west reference
axes, vector "A" is oriented in the NE
quadrant with a direction of 45  north of theo

EW axis. G iving direction to scalar "A"
makes it a vector.  The length of "A" is
representative of its magnitude or
displacement.
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Figure 2   Vector

To help distinguish between a scalar and a vector, let's look at an example where the only
information known is that a car is moving at 50 miles per hour.  The information given (50 mph)
only refers to the car's speed, which is a scalar quantity.  It does not indicate the direction the
car is moving.  However, the same car traveling at 50 mph due east indicates the velocity of the
car because it has magnitude (50 mph) and direction (due east); therefore, a vector is indicated.
When a vector is diagrammed, a straight line is drawn to show the unit of length.  An arrow is
drawn on one end of the line.  The length of the line represents the magnitude of the vector, and
the arrow represents the direction of the vector.

Description of a Simple Vector

Vectors are simple straight lines used to illustrate the direction and magnitude of certain
quantities.  Vectors have a starting point at one end (tail) and an arrow at the opposite end
(head), as shown in Figure 2.

Examples of Vector Quantities

Displacement, velocity, acceleration, and force are examples of vector quantities.  Momentum
and magnetic field strength are also good examples of vector quantities, although somewhat
more difficult to understand.  In each of these examples, the main ingredients of magnitude and
direction are present.
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Scalar and Vector Quantities Summary

SCALAR QUANTITIES

C Magnitude only

C Independent of direction

C Examples of scalars include:
time, speed, volume, and
temperature

VECTOR QUANTITIES

C Both magnitude and direction

C Length represents magnitude

C Arrow shows direction

C Examples of vectors include:
force, velocity, and acceleration

Summary

The important aspects of scalar and vector quantities are summarized below.
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Figure 3   Rectangular Coordinate System

VECTOR IDENTIFICATION

Vectors are symbolized in specific ways in texts and on graphs, using letters or rectangular
coordinates.

In Written Materials

In textbooks, vector quantities are often represented by simply using a boldfaced letter (A, B, C, R).
Particular quantities are predefined (F - force,  V - velocity, and A - acceleration).  Vector quantities
are sometimes represented by, , , .  Regardless of the convention used, specific vector A B C R

vv vv vv vv   

quantities must include magnitude and direction (for example, 50 mph due north, or 50 lbf at 90 ).o

Graphic Representation

Vector quantities are graphically
represented using the rectangular
coordinate system, a two-dimensional
system that uses an x-axis and a y-axis.
The x-axis is a horizonal straight line.
The y-axis is a vertical straight line,
perpendicular to the x-axis.  An
example of a rectangular system is
shown in Figure 3.

The intersection of the axes is called
the point of origin.  Each axis is
marked off in equal divisions in all four
directions from the point of origin.  On
the horizonal axis (x), values to the
right of the origin are positive (+).
Values to the left of the origin are
negative (-).  On the vertical axis (y),
values above the point of origin are
positive (+). Values below the origin are negative (-).  It is very important to use the same units (divisions)
on both axes.

The rectangular coordinate system creates four infinite quadrants.  Quadrant I is located above and
to the right of the origin.  Quadrant II is located above and to the left of the origin.  Quadrant III is
situated to the left and below the origin, and quadrant IV is located below and to the right of the
origin (see Figure 3).



Vectors VECTOR IDENTIFICATION

Rev. 0 Page 5 CP-02

Figure 4   Displaying Vectors Graphically - Magnitude

Graphic Representation of Vectors

With the coordinate system defined, the following explanation will illustrate how to locate vectors in
that system.

First, using a ruler and graph paper, a rectangular coordinate system is laid out as described in the
previous section.  The x- and y-axes are labeled.  Equal divisions are marked off in all four directions.
Those to the right and above the point of origin are labeled positive (+).  Those to the left and below
the point of origin are labeled negative (-).

Beginning at the point of origin (intersection of the axes), a line segment of the proper length is shown
along the x-axis, in the positive direction.  This line segment represents the vector magnitude, or
displacement.  An arrow is placed at the "head" of the vector to indicate direction.  The "tail" of the
vector is located at the point of origin (see Figure 4).

When vectors are drawn that do not fall on the x- or y-axes, the tail is located at the point of origin.
Depending on the vector description, there are two methods of locating the head of the vector.  If
coordinates (x,y) are given, these values can be plotted to locate the vector head.  If the vector is
described in degrees, the line segment can be rotated counterclockwise from the x-axis to the proper
orientation, as shown in Figure 5.
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Figure 5   Display Vectors Graphically - Direction

Figure 6   Directional Coordinates

Because the x- and y-axes define direction, conventional directional coordinates and degrees may also
be used to identify the x- and y-axes (see Figures 6 and 7).



Vectors VECTOR IDENTIFICATION

Rev. 0 Page 7 CP-02

Figure 7   Degree Coordinates

Vector Identification Summary

C In text:

- Boldfaced letters ( A,  F,  R)
- Capital letters with arrows over (, ,  )A F R

vv vv vv  

C Graphically:

- (x,y) coordinates
- Directional Coordinates
- Degrees

Summary

The main points covered in this chapter are summarized below.
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Figure 8   Vector Addition in Same Direction

Figure 9   Vector Addition in Opposite Directions

VECTORS:  RESULTANTS AND COMPONENTS

A resultant is a single vector which represents the combined effect of two or more other
vectors (called components).  The components can be determined either graphically
or by using trigonometry.

EO 1.1 DEFINE the following as they relate to vectors:
c. Vector component
d. Resultant

EO 1.2 DETERMINE components of a vector from a resultant
vector. 

Resultant

When two or more vectors are added they yield
the sum or resultant vector.  A resultant vector is
the result or sum of vector addition.  Vector
addition is somewhat different from addition of
pure numbers unless the addition takes place along
a straight line.  In the latter case, it reduces to the
number line of standards or scale addition.  For
example, if one walks five miles east and then
three miles east, he is eight miles from his starting
point.  On a graph (Figure 8), the sum of the two
vectors, i.e., the sum of the five miles plus the
three mile displacement, is the total or resultant
displacement of eight miles.

Similarly, if one walks five miles east
and then three miles west, the resultant
displacement is two miles east (Figure
9).

The vector diagrams of Figure 8 and
Figure 9 are basically scale diagrams of
what is happening in the real world of
addition of vector quantities.
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Figure 10   Vector Addition Not in Same Line

Consider next the addition of vector quantities which are not in a straight line.  For example,
consider the resultant displacement when a person travels four miles east and then three miles
north.  Again a scale drawing (Figure 10) is in order.  Use a scale of 1 inch = 1 mile.

When drawing a scale drawing, one draws a straight line from the origin C to the final position
B to represent the net or resultant displacement.  Drawing the straight line CB and measuring its
length, one should obtain about 5 inches.  Then, since the scale of the drawing is 1 inch = 1 mile,

this is used as a conversion factor giving  as the actual

displacement.

Using a protractor or trigonometry, the acute angle ACB can be determined to be about 37 .o

Thus, the resultant (or vector sum) of traveling 4 miles east plus 3 miles north is a displacement
of 5 miles at 37 degrees north of east.



VECTORS:  RESULTANTS AND COMPONENTS Vectors

CP-02 Page 10 Rev. 0

It is left as an exercise for the student to show that vector addition is commutative, using the
above example.  Specifically, make a scale drawing showing that traveling 3 miles north and
then 4 miles east yields the same resultant as above.

It is also reasonably obvious that more than two vectors can be added.  One can travel three
miles east and then three miles north and then three miles west and arrive at a point three miles
north of the starting point.  The sum of these three displacements is a resultant displacement
of three miles north. (If this is not immediately apparent, sketch it.)

A student problem is to find the net or resultant displacement if a person travels 9 miles south
and then 12 miles east and then 25 miles north.  Make a scale drawing and determine the
magnitude and direction of the resultant displacement.  A scale of 2 miles per centimeter or
4 miles per inch will fit the drawing on standard paper.

Answer: About 20 miles at 53  north of east.o

Vector Components

Components of a vector are vectors, which when added, yield the vector.  For example, as
shown in the previous section (Figure 10), traveling 3 miles north and then 4 miles east yields
a resultant displacement of 5 miles, 37  north of east.  This example demonstrates thato

component vectors of any two non-parallel directions can be obtained for any resultant vector
in the same plane. For the purposes of this manual, we restrict our discussions to two
dimensional space. The student should realize that vectors can and do exist in three dimensional
space.

One could write an alternate problem:  "If I am 5 miles from where I started northeast along a
line 37  N of east, how far north and how far east am I from my original position?"  Drawing thiso

on a scale drawing, the vector components in the east and north directions can be measured to
be about 4 miles east and 3 miles north.  These two vectors are the components of the resultant
vector of 5 miles, 37  north of east.o

Component vectors can be determined by plotting them on a rectangular coordinate system.  For
example, a resultant vector of 5 units at 53  can be broken down into its respective x and yo

magnitudes.  The x value of 3 and the y value of 4 can be determined using trigonometry or
graphically.  Their magnitudes and position can be expressed by one of several conventions
including: (3,4), (x=3, y=4), (3 at 0 , 4 at 90 ), and (5 at 53 ).  In the first expression, the firsto o o

term is the x-component (F ), and the second term is the y-component (F ) of the associatedx y

resultant vector.
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Figure 11   Vector Components

Figure 12   Component Vectors

As in the previous example, if only
the resultant is given, instead of
component coordinates, one can
determine the vector components as
illustrated in Figure 11.  First, plot
t he  resultant on rectangular
coordinates and then project the
vector coordinates to the axis.  The
length along the x-axis is F , and thex

length along the y-axis is F .  Thisy

method is demonstrated in the
following example.

For the resultant vector shown in
Figure 12, determine the component
vectors given F  = 50 lbf at 53 .R

o

First, project a perpendicular line
from the head of F  to the x-axis andR

a similar line to the y-axis.  Where the projected lines meet, the axes determine the magnitude
size of the component vectors.  In this example, the component vectors are 30 lbf at 0  (F ) ando

x

40 lbf at 90  (F ).  If F  had not already been drawn, the first step would have been to draw theo
y R

vector.
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Figure 13   Right Triangle

As an exercise, the student should graphically find the easterly and northerly components of a
13 mile displacement at 22.6  north of east.  The correct answer is 5 miles east and 12 mileso

north.

Trigonometry may also be used to determine vector components.  Before explaining this method,
it may be helpful to review the fundamental trigonometric functions.  Recall that trigonometry is
a branch of mathematics that deals with the relationships between angles and the length of the sides
of triangles.  The relationship between an acute angle of a right triangle, shown in Figure 13, and
its sides is given by three ratios.

(2-1)

(2-2)

(2-3)

Before attempting to calculate vector components, first make a rough sketch that shows the
approximate location of the resultant vector in an x-y coordinate system.  It is helpful to form a
visual picture before selecting the correct trigonometric function to be used.  Consider the example
of Figure 12, that was used previously.  This time the component vectors will be calculated.
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Figure 14   F  = 50 lbf at 53R
o

Example 1: Determine the component vectors, F  and F , for F  = 50 lbf at 53  in Figure 14.x y R
o

Use trigonometric functions.

F  is calculated as follows:x

cos 2 = adjacent/hypotenuse
cos 2 = F /F  or F  = F  cos 2x R x R

F  = (50)(cos53 )x
o

F  = (50)(0.6018)x

F  = 30 lbf on x-axisx

F  is calculated as follows:y

sin 2 = opposite/hypotenuse
sin 2 = F /F  or F  = F  sin 2y R y R

F  = (F )(sin 2)y R

F  = (50)(sin 53 )y
o

F  = (50)(0.7986)y

F  = 40 lbf on y-axisy

Therefore, the components for F  are F  = 30 lbf at 0  and F  = 40 lbf at 90 .  Note that this resultR x y
o o

is identical to the result obtained using the graphic method.
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Figure 15   F  = 80 lbf at 220R
o

Example 2: What are the component vectors, given F  = 80 lbf at 220 ?  See Figure 15.R
o

F  is calculated as follows:x

cos 2 = adjacent/hypotenuse

cos 2 = F /F  or F  = F  cos 2x R x R

F  = (F )(cos 2)x R

F  = (80)(cos 220 )x
o

F  = (80)(-0.766)x

F  = -61 lbf at 0  or 61 lbf at 180x
o o
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Vector Terminology Summary

C A resultant is a single vector that can replace two or
more vectors.

C Components can be obtained for any two non-parallel
directions if the vectors are in the same plane.
Restricting the treatment to perpendicular directions
and two dimensional space, the components of a
vector are the two vectors in the x and y (or east-
west and north-south) directions which produce the
same effect as the original vector (or add to produce
the original vector).

C Components are determined from data, graphically or
analytically.

F  is calculated as follows:y

sin 2 = opposite/hypotenuse

sin 2 = F /F  or F  = F  sin 2y R y R

F  = F  sin 2y R

F  = (80)(sin 220 )y
o

F  = (80)(-0.6428)y

F  = -51 lbf at 90  or 51 lbf at 270y
o o

Therefore, the components for F  are F  = 61 at 180  and F  = 51 lbf at 270 .R x y
o o

Summary

Vector terminology is summarized below.
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Figure 16   Rectangular Coordinate System

GRAPHIC METHOD OF VECTOR ADDITION

Vectors are added to determine the magnitude and direction of the resultant.

EO 1.3 ADD vectors using the following methods:
a. Graphical

Vector Addition

Component vectors are added to determine the resultant vector.  For example, when two or
more forces are acting on a single object, vector addition is used to determine the direction and
magnitude of the net (resultant) force on the object.  Consider an airplane that travels due east
for 100 miles at 500 mph, then NE for 50 miles at 400 mph, and finally north for 500 miles at
500 mph.  Vector addition can be used to determine the net distance the airplane is from its point
of origin or to predict when it will arrive at its destination.

Methods Used to Add Vectors

Several methods have been developed to add vectors.  In this chapter, the graphic method will
be explained.  The next chapter will explain the component addition method.  Either one of these
methods will provide fairly accurate results.  If a high degree of accuracy is required, an
analytical method using geometric and trigonometric functions is required.

Using the Graphic Method

Before attempting to use this method, the
following equipment is needed: standard linear
(nonlog) graph paper, ruler, protractor, and pencil.
The graphic method utilizes a five-step process.

Step 1. Plot the first vector on the
rectangular (x-y) axes.

a. Ensure that the same
scale is used on both
axes.

b. Place the tail (beginning)
of the first vector at the
origin of the axes as
shown in Figure 16.
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Figure 17   Vector F2

Figure 18   Resultant

Step 2. Draw the second vector connected to
the end of the first vector.

a. Start the tail of the second
vector at the head of the first
vector.

b. Ensure that the second vector is
also drawn to scale.

c. Ensure proper angular
orientation of the second vector
with respect to the axes of the
graph (see Figure 17).

Step 3. Add other vectors sequentially.

a. Add one vector at a time.

b. Always start the tail of the new vector at the head of the previous vector.

c. Draw all vectors to scale and with proper angular orientation.

Step 4. When all given vectors have been
drawn, draw and label a resultant
vector, F , from the point of originR

of the axes to the head of the final
vector.

a. The tail of the resultant is the
tail of the first vector drawn
as shown in Figure 18.

b. The head of the resultant is at
the head of the last vector
drawn.



GRAPHIC METHOD OF VECTOR ADDITION Vectors

CP-02 Page 18 Rev. 0

Figure 19   Graphic Addition - Example 1

Step 5. Determine the magnitude and direction of the resultant.

a. Measure the displacement and angle directly from the graph using a ruler
and a protractor.

b. Determine the components of the resultant by projection onto the x- and
y-axes.

Example 1: What are the magnitude and direction of the resultant for the following: F  = 31

units at 300 , F  = 4 units at 60 , and F  = 8 units at 180 ?  The three vectors ando o o
2 3

their resultant are shown in Figure 19.

Answer: F  = 4 units at 150R
o

Example 2: Given X  = 50 Ohms at 90 , R = 50 Ohms at 0 , and X  = 50 Ohms at 270 , whatL c
o o o

is the Resultant Z? (See Figure 20) Note:  X  is inductive reactance, X  isL c

capacitive reactance and Z is impedance.

Answer: Z = 50 Ohms at 0o
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Figure 20   Graphic Addition - Example 2

Graphic Method Summary

C Draw rectangular coordinates.

C Draw first vector.

C Draw second vector connected to the end (head) of first vector with proper
angular orientation.

C Draw remaining vectors, starting at the head of the preceding vector.

C Draw resultant vector from the origin of axes to head of final vector.

C Measure length of resultant.

C Measure angle of resultant vector addition.

Summary

The steps of the graphic method of vector addition are summarized below.
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Figure 21   Vector Addition Component Method

COMPONENT ADDITION METHOD

Vector components are added along each axis to determine the magnitude and
direction of the resultant.

EO 1.3 ADD vectors using the following methods:
b. Component addition

An Explanation of Components

The component addition method refers to the
addition of vector coordinates on a rectangular
(x,y) coordinate system.  Coordinates, as seen
in previous examples, locate a specific point in
the system.  Relative to vectors, that specific
point is the head of the vector.  There are two
ways to locate that point.  The head can be
located by counting the units along the x-axis
and the units along the y-axis, as illustrated in
Figure 21, where the point has coordinates
(4,3);  i.e., the  x component has a magnitude of
4 and the y component has a magnitude of 3.

The head can also be found by locating a vector
of the proper length on the positive side of the
x-axis, with its tail at the intersection of the x-
and y- axes.  Then the vector is rotated a given
number of degrees in the counterclockwise direction.  In this example, the head of the vector is
located five units at 36.9 .  Five units is the length of the vector.o

Using the Component Addition Method

To add vectors using the component addition method, use the following four step method.

Step 1. Determine x- and y-axes components of all original vectors.

Step 2. Mathematically combine all x-axis components.

Note: When combining, recognize that positive x components at 180  are equivalento

to negative x components at 0  (+x at 180  = -x at 0 ).o o o
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3. Mathematically combine all y-axis components (+y at 270  = -y at 90 ).o o

4. Resulting (x,y) components are the (x,y) components of the resulting vector.

The following examples illustrate vector addition using the component addition method.

Example 1:

Given the following vectors what are the coordinates of the resultant vector, that is, the sum of the
vectors?

F  = (4,10), F  = (-6,4), F  = (2,-4), and F  = (10,-2)1 2 3 4

Step 1. Determine the x- and y-axes components of all four original vectors.

x-axes components = 4, -6, 2, 10
y-axes components = 10, 4, -4, -2

Step 2. Mathematically combine all x-axis components.

F  = 4 + (-6) + 2 + 10x

F  = 4 - 6 + 2 + 10x

F  = 10x

Step 3. Mathematically combine all y-axis components.

F  = 10 + 4 + (-4) + (-2)y

F  = 10 + 4 - 4 - 2y

F  = 8y

Step 4. Express the resultant vector.

The resultant components from the previous additions are the coordinates of the
resultant, that is, F  = (10,8).R

Example 2: Determine the resultant, F .R

Given: F  = 30 lbf at 0 , 10 lbf at 901
o o

F  = 50 lbf at 0 , 50 lbf at 902
o o

F  = 45 lbf at 180 , 30 lbf at 903
o o

F  = 15 lbf at 0 , 50 lbf at 2704
o o
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Component Addition Method Summary

C Determine the x- and y- axes of all original vectors.

C Mathematically combine all x-axis components.

C Mathematically combine all y-axis components.

C The results are the components of the resultant vector.

Follow the sequence used in the first example.  Remember that x at 180  is -x at 0 , and y ato o

270  is -y at 90 .o o

F  = 30 + 50 +(-45) + 15 = 50 lbfx

F  = 10 + 50 + 30 + (-50) = 40 lbfy

F  = 50 lbf at 0 , 40 lbf at 90R
o o

Summary

The sequence of steps used in the component addition method of adding vectors is summarized
below.
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Figure 22   Right Triangle

ANALYTICAL METHOD OF VECTOR ADDITION

Vector components are added to determine the magnitude and direction of the
resultant.  Calculations using trigonometric functions are the most accurate
method for making this determination.

EO 1.3 ADD vectors using the following methods:
c. Analytical

The graphic and components addition methods of obtaining the resultant of several vectors
described in the previous chapters can be hard to use and time consuming.  In addition, accuracy
is a function of the scale used in making the diagram and how carefully the vectors are drawn.  The
analytical method can be simpler and far more accurate than these previous methods.

Review of Mathematical Functions

In earlier mathematics lessons, the Pythagorean Theorem was used to relate the lengths of the
sides of right triangles such as in Figure 22.  The Pythagorean Theorem states that in any right
triangle, the square of the length of the hypotenuse equals the sum of the squares of the lengths
of the other two sides.  This expression may be written as given in Equation 2-4.

(2-4)
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Figure 23   Trigonometric Functions

Figure 24   Hypotenuse and Angle

Also, recall the three trigonometric functions
reviewed in an earlier chapter and shown in
Figure 23.  The cosine will be used to solve for
F .  The sine will be used to solve for F .x y

Tangent will normally be used to solve for 2,
although sine and cosine may also be used.

On a rectangular coordinate system, the sine
values of 2 are positive (+) in quadrants I and II
and negative (-) in quadrants III and IV.  The
cosine values of 2 are positive (+) in quadrants
I and IV and negative (-) in quadrants II and III.
Tangent values are positive (+) in quadrants I
and III and negative (-) in quadrants II and IV.

When mathematically solving for tan 2, calculators will specify angles in quadrants I and IV only.
Actual angles may be in quadrants II and III.  Each problem should be analyzed graphically to
report a realistic solution.  Quadrant II and III angles may be obtained by adding or subtracting
180  from the value calculated.o

Using the Analytical Method

To illustrate this method, consider this example:  a man walks 3 miles in one direction, then turns
90  and continues to walk for an additional 4 miles.  In what direction and how far is he from hiso

starting point?  The first step in solving this problem is to draw a simple sketch as shown in Figure
24.
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Figure 25   Example Model 1

His net displacement is found using equation 2-4.

His direction (angle of displacement) is found using the tangent function.

tan 2 = opposite/adjacent
tan 2 = a/b
tan 2 = 4/3
tan 2 = 1.33
2 = tan  1.33-1

2 = 53o

Therefore, his new location is 5 miles at 53  from his starting point.o

By carrying this approach a step further, a model has been developed for finding the resultant of
several vectors.  For the purpose of developing the model, consider three forces (F , F , and F )1 2 3

acting on an object as shown in Figure 25.  The goal is to find the resultant force (F ).R
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Figure 26   Example Model 2

Step 1: Draw x and y coordinates and the three forces from the point of origin or the
center of the object, as shown in Figure 26.  Component vectors and angles have
been added to the drawing to aid in the discussion.



FR ' F2
Rx % F2

Ry
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Step 2: Resolve each vector into its rectangular components.

Vector Angle x component y component

F 2 F  = F cos2 F  = F sin21

F 2 F  = F cos2 F  = F sin22

F 2 F  = F cos2 F  = F sin23

1

2

3

1x 1 1

2x 2 2

3x 3 3

1y 1 1

2y 2 2

3y 3 3

Step 3: Sum the x and y components.

F  = EF  = F  + F  + FRx x 1x 2x 3x

F  = EF  = F  + F  + FRy y 1y 2y 3y

Where "E" means summation

Step 4: Calculate the magnitude of F .R

Step 5: Calculate the angle of displacement.
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Force Magnitude Angle x component y component

F  90 lbf 39 F  = 90 cos 39 F  = 90 sin 391 1x 1y
o o o

F  = (90) (.777) F  = (90) (.629)1x 1y

F  = 69.9 lbf F  = 56.6 lbf1x 1y

F  50 lbf 120 F  = 50 cos 120 F  = 50 sin 1202 2x 2y
o o o

F  = (50) (-.5) F  = (50) (.866)2x 2y

F  = -25 lbf F  = 43.3 lbf2x 2y

F 125 lbf 250 F  = 125 cos 250 F  = 125 sin 2503 3x 3y
o o o

F  = (125) (-.342) F  = (125) (-.94)3x 3y

F  = -42.8 lbf F  = -117.5 lbf3x 3y

Here is an example using this model.  Follow it through step by step.

Example: Given three forces acting on an object, determine the magnitude and direction of
the resultant force F .R

F  = 90 lbf at 391
o

F  = 50 lbf at 1202
o

F  = 125 lbf at 2503
o

Step 1: First draw x and y coordinate axes on a sheet of paper.  Then, draw F , F ,1 2

and F  from the point of origin.  It is not necessary to be totally accurate3

in placing the vectors in the drawing.  The approximate location in the
right quadrant is all that is necessary.  Label the drawing as in the model
(Figure 26).

Step 2: Resolve each force into its rectangular coordinates.



F2
x % F2

y
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Step 3: Sum the x and y components.

F  = F  + F  + FRx 1x 2x 3x

F  = 69.9 lbf + (-25 lbf) + (-42.8 lbf)Rx

F  = 2.1 lbfRx

F  = F  + F  + FRy 1y 2y 3y

F  = 56.6 lbf + 43.3 lbf + (-117.5 lbf)Ry

F  = -17.6 lbfRy

Step 4: Calculate the magnitude of F .R

F  = R

F  = R

F  = R

F  = 17.7 lbfR

Step 5: Calculate the angle of displacement.

tan 2 = F /FRy Rx

tan 2 = -17.6/2.1

tan 2 = -8.381

2 = tan  (-8.381)-1

2 = -83.2o

Therefore, F  = 17.7 lbf at -83.2  or 276.8 .R
o o

Note: A negative angle means a clockwise rotation from the zero axis.

It is left to the student to try the previous example using the other methods of vector addition
described in earlier chapters.
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Analytical Method of Adding 
Vectors Summary

C Draw x and y coordinate axes.

C Draw component vectors from point of origin.

C Resolve each vector into rectangular components.

C Sum x and y components.

C Calculate magnitude of F .R

C Calculate angle of displacement.

Summary

The steps followed when using the analytical method to find the resultant of several vectors are
summarized below.
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TERMINAL OBJECTIVE

1.0 APPLY  Newton's laws of motion to a body.

ENABLING OBJECTIVES

1.1 STATE Newton's first law of motion.

1.2 STATE Newton's second law of motion.

1.3 STATE Newton's third law of motion.

1.4 STATE Newton's law of universal gravitation.

1.5 DEFINE  momentum.

1.6 EXPLAIN  the conservation of momentum.

1.7 Using the conservation of momentum, CALCULATE  the velocity for an object
(or objects) following a collision of two objects.
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NEWTON'S LAWS OF MOTION

The study of Newton's laws of motion allows us to understand and accurately
describe the motion of objects and the forces that act on those objects.

EO 1.1 STATE Newton's first law of motion.

EO 1.2 STATE Newton's second law of motion.

EO 1.3 STATE Newton's third law of motion.

EO 1.4 STATE Newton's law of universal gravitation.

The basis for modern mechanics was developed in the seventeenth century by Sir Isaac Newton.
From his studies of objects in motion, he formulated three fundamental laws.

Newton's first law of motion states "an object remains at rest (if originally at rest) or moves
in a straight line with constant velocity if the net force on it is zero." 

Newton's second law states "the acceleration of a body is proportional to the net (i.e., sum or
resultant) force acting on it and in the direction of that net force."  This law establishes the
relationship between force, mass, and acceleration and can be written mathematically as shown
in Equation 3-1.

(3-1)

where:

F = force (Newton = 1 Kg-m/sec , or lbf)2

m = mass (Kg or lbm)
a = acceleration (m/sec  or ft/sec )2 2

This law is used to define force units and is one of the most important laws in physics.  Also,
Newton's first law is actually a consequence of this second law, since there is no acceleration when
the force is zero, and the object is either at rest or moving with a constant velocity.  Equation 3-1
can be used to calculate an objects weight at the surface of the earth.  In this special case, F is the
force, or weight, caused by the gravitational acceleration of the earth acting on the mass, m, of the
object.  When dealing with this type of problem, we designate the acceleration, g, which equals
9.8m/sec  or 32.17 ft/sec  (g is called gravitational acceleration constant).  Thus, equation 3-12 2

becomes F = mg for this case.
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Newton's third law of motion states "if a body exerts a force on a second body, the second body
exerts an equal and opposite force on the first."  This law has also been stated as, "for every
action there is an equal and opposite reaction."

The third law is basic to the understanding of force.  It states that forces always occur in pairs
of equal and opposite forces.  Thus, the downward force exerted on a desk by a pencil is
accompanied by an upward force of equal magnitude exerted on the pencil by the desk.  This
principle holds for all forces, variable or constant, regardless of their source.

One additional law attributed to Newton concerns mutual attractive forces between two bodies.
It is known as the universal law of gravitation and is stated as follows.

"Each and every mass in the universe exerts a mutual, attractive gravitational
force on every other mass in the universe.  For any two masses, the force is
directly proportional to the product of the two masses and is inversely
proportional to the square of the distance between them."

Newton expressed the universal law of gravitation using Equation 3-2.

(3-2)

where:

F = force of attraction (Newton = 1Kg-m/sec  or lbf)2

G = universal constant of gravitation (6.673 x 10  m /kg-sec  or 3.44 x 10-11 3 2 -8

)

m = mass of the first object (Kg or lbm)1

m = mass of the second object (Kg or lbm)2

r = distance between the centers of the two objects (m or ft)

Using this universal law of gravitation, we can determine the value of g (gravitational acceleration
constant), at the surface of the earth.  We already know this value to be 9.8 m/sec  (or 32.172

ft/sec ), but it can be calculated using Equation 3-2.2

Calculation:

First, we will assume that the earth is much larger than the object and that the object
resides on the surface of the earth; therefore, the value of r will be equal to the radius of
the earth.  Second, we must understand that the force of attraction (F) in Equation 3-2
for the object is equal to the object's weight (F) as described in Equation 3.1.  Setting
these two equations equal to each other yields the following.



F ' G
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where:

M = mass of the earth (5.95 x 10  kg)e
24

m = mass of the object1

r = radius of the earth (6.367 x 10  m)6

The mass (m ) of the object cancels, and the value of (g) can be determined as follows1

since a=g by substituting (g) for (a) in the previous equation.

If the object is a significant distance from the earth, we can demonstrate that (g) is not a
constant value but varies with the distance (altitude) from the earth.  If the object is at an
altitude of 30 km (18.63 mi), then the value of (g) is as follows:

As you can see, a height of 30 km only changes (g) from 9.8 m/sec  to 9.7 m/sec .  There2 2

will be an even smaller change for objects closer to the earth.  Therefore, (g) is normally
considered a constant value since most calculations involve objects close to the surface
of the earth.
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Newton's Laws of Motion Summary

Newton's First Law of Motion

An object remains at rest (if originally at rest) or moves in a straight line with
constant velocity if the net force on it is zero.

Newton's Second Law of Motion

A particle with a force acting on it has an acceleration proportional to the
magnitude of the force and in the direction of that force.

Newton's Third Law of Motion

The forces of action and reaction between interacting bodies are equal in
magnitude and opposite in direction.

- or -

For every action there is an equal and opposite reaction.

Newton's Universal Law of Gravitation

Each and every mass in the universe exerts a mutual, attractive gravitational
force on every other mass in the universe.  For any two masses, the force is
directly proportional to the product of the two masses and is inversely
proportional to the square of the distance between them.

Summary

Newton's laws of motion are summarized below.
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MOMENTUM PRINCIPLES

Momentum is a measure of the motion of a moving body.  An understanding of
momentum and the conservation of momentum provides essential tools in solving
physics problems.

EO 1.5 DEFINE momentum.

EO 1.6 EXPLAIN the conservation of momentum.

EO 1.7 Using the conservation of momentum, CALCULATE the
velocity for an object (or objects) following a collision of
two objects.

Momentum

Momentum is a basic and widely applicable concept of physics.  It is, in a sense, the measure of
the motion of a moving body.  It is the result of the product of the body's mass and the velocity
at which it is moving.  Therefore, momentum can be defined using Equation 3-3.

P = mv (3-3)

where:

P = momentum of the object (Kg-m/sec or ft-lbm/sec)
m = mass of the object (Kg or lbm)
v = velocity of the object (m/sec or ft/sec)

Momentum is a vector quantity since it results from the velocity of the object.  If different
momentum quantities are to be added vectorially, the direction of each momentum must be taken
into account.  However, to simplify the understanding of momentum, only straight line motions
will be considered.

Example:

Calculate the momentum for a 16 lbm bowling ball rolling down a lane at 22 ft/sec.
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Solution:

Force and Momentum

There is a direct relationship between force and momentum.  The rate at which momentum
changes with time is equal to the net force applied to an object.  This relationship comes directly
from Newton's second law of motion, F = ma.  This is a special case of Newton's second law for
a constant force which gives rise to a constant acceleration.  The linking fact is that acceleration
is the rate at which velocity changes with time.  Therefore, we can determine the following:

We know that, 

and since, 

then, (3-4)

which can also be written, (3-5)

Substituting P for mv and P  for mv , o o

or (3-6)

From Equation 3-6, we can determine that force (F) is equal to the change in momentum per
time.



F ' m
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Example:

The velocity of a rocket must be increased by 110 ft/sec to achieve proper orbit around
the earth.  If the rocket has a mass of 5 tons and it takes 9 sec. to reach orbit, calculate
the required thrust (force) to achieve this orbit.

Solution:

Even though the initial velocity (v ) and final velocity (v) are unknown, we do know theo

change in velocity (v-v ), which is 110 ft/sec.  Therefore, using Equation 3-4 we can findo

the solution.

Conservation of Momentum

One of the most useful properties of momentum is that it is conserved.  This means that if no net
external force acts upon an object, the momentum of the object remains constant.  Using
Equation 3-6, we can see that if force (F) is equal to zero, then )P = 0.  It is most important for
collisions, explosions, etc., where the external force is negligible, and states that the momentum
before the event (collision, explosion) equals the momentum following the event.

The conservation of momentum applies when a bullet is fired from a gun.  Prior to firing the gun,
both the gun and the bullet are at rest (i.e., V  and V  are zero), and therefore the totalG B

momentum is zero.  This can be written as follows:

When the gun is fired, the momentum of the recoiling gun is equal and opposite to the
momentum of the bullet.  That is, the momentum of the bullet (m v ) is equal to the momentumB B

of the gun (m v ), but of opposite direction.G G
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Figure 1   Momentum

The development of the law of conservation of momentum does not consider whether the
collision is elastic or inelastic.  In an elastic collision, both momentum and kinetic energy (i.e.,
energy due to an objects velocity) are conserved.  A common example of an elastic collision is
the head-on collision of two billiard balls of equal mass.  In an inelastic collision, momentum is
conserved, but system kinetic energy is not conserved.  An example of an inelastic collission is
the head-on collision of two automobiles where part of the initial kinetic energy is lost as the
metal crumples during the impact.  The concept of kinetic energy will be discussed further in
Module 5 of this course.

The law of conservation of momentum can be mathematically expressed in several different
ways.  In general, it can be stated that the sum of a system's initial momentum is equal to the sum
of a system's final momentum.

(3-7)

In the case where a collision of two objects occurs, the conservation of momentum can be stated
as follows.

P  + P  = P  + P (3-8)1 initial 2 initial 1 final 2 final

or

(m v )  + (m v )  = (m v )  + (m v ) (3-9)1 1 initial 2 2 initial 1 1 final 2 2 final

In the case where two bodies collide and have identical final velocities, equation 3-10 applies.

m v  + m v  = (m  + m )v (3-10)1 1 2 2 1 2 f

For example, consider two railroad cars rolling on a level, frictionless track (see Figure 1).  The
cars collide, become coupled, and roll together at a final velocity (v ).  The momentum beforef

and after the collision is expressed with Equation 3-10.



vf '
m1v1 % m2v2

m1 % m2

vf '
m1v1 % m2v2

m1 % m2

vf '
(2300 lbm)(29 ft/sec)% (2800 lbm)(11 ft/sec)

2300lbm% 2800 lbm

vf ' 19.1 ft/sec
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If the initial velocities of the two objects (v  and v ) are known, then the final velocity (v ) can1 2 f

be calculated by rearranging Equation 3-10 into Equation 3-11.

(3-11)

Example:

Consider that the railroad cars in Figure 1 have masses of m  = 2300 lbm and1

m  = 2800 lbm.  The first car (m ) is moving at a velocity of 29 ft/sec and the second car2 1

(m ) is moving at a velocity of 11 ft/sec.  The first car overtakes the second car and2

couples with it.  Calculate the final velocity of the two cars.

Solution:

The final velocity (v ) can be easily calculated using Equation 3-8.f
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Summary

The concepts of momentum and the conservation of momentum are summarized below.

Momentum Summary

Momentum is the measure of the motion of a moving body.  It is
the result of the product of the body's mass and the velocity at
which it is moving.  Therefore, momentum can be defined as:

P = mv.

The conservation of momentum states that if no net external
force acts upon a system, the momentum of the system remains
constant.  If force (F) is equal to zero, then )P = 0.

The momentum before and after a collision can be calculated
using the following equation.

(m v )  + (m v )  = (m v )  + (m v )1 1 initial 2 2 initial 1 1 final 2 2 final
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TERMINAL OBJECTIVE

1.0 From memory, APPLY  the principles of force to stationary or moving bodies.

ENABLING OBJECTIVES

1.1 DEFINE  the following:
a. Force
b. Weight

1.2 STATE the purpose of a free-body diagram.

1.3 Given all necessary information, CONSTRUCT a free-body diagram.

1.4 STATE the conditions necessary for a body to be in force equilibrium.

1.5 DEFINE  the following:
a. Net force
b. Equilibrant

1.6 DEFINE  the following:
a. Tensile force
b. Compressive force
c. Frictional force

1.7 EXPLAIN  the difference between a static-friction force and a kinetic-friction force.

1.8 STATE two factors that affect the magnitude of the friction force.

1.9 EXPLAIN  the difference between centripetal force and centrifugal force.
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FORCE AND WEIGHT

Force can be thought of simply as a push or pull, but is more clearly defined as
any action on a body that tends to change the velocity of the body.  Weight is a
force exerted on an object due to the object's position in a gravitational field.

EO 1.1 DEFINE the following:
a. Force
b. Weight

Introduction

In the study of forces, the student must make valid assumptions called for in the formulation of
real problems.  The ability to understand and make use of the correct assumptions in the
formulation and solution of engineering problems is certainly one of the most important abilities
of a successful operator.  One of the objectives of this manual is to provide an opportunity to
develop this ability through the study of the fundamentals and the analysis of practical problems.

An effective method of attack on all engineering problems is essential.  The development of good
habits in formulating problems and in representing their solutions will prove to be a valuable asset.
Each solution should proceed with a logical sequence of steps from hypothesis to conclusion, and
its representation should include a clear statement of the following parts, each clearly
defined:  a) given data, b) results desired, c) necessary diagrams, d) calculations, and e) answers
and conclusions.  Many problems become clear and straightforward once they are begun with a
logical and disciplined method of attack.

In addition, it is important to incorporate a series of checks on the calculations at intermediate
points in the solution.  Also, all work must be neat and orderly.

The subject of classical physics is based on surprisingly few fundamental concepts and involves
mainly the application of these basic relations to a variety of situations.  Newton's laws of motion
are some of the fundamental concepts used in the study of force and weight.
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Force

Force is defined as a vector quantity that tends to produce an acceleration of a body in the direction
of its application.  Changing the body's velocity causes the body to accelerate.  Therefore, force can
be mathematically defined as given by Newton's second law of motion (Equation 4-1).

(4-1)

where:

F = force on object (Newton or lbf)
m = mass of object (Kg or lbm)
a = acceleration of object (m/sec  or ft/sec )2 2

Force is characterized by its point of application, its magnitude, and its direction.  A force that is
actually distributed over a small area of the body upon which it acts may be considered a concentrated
force if the dimensions of the area involved are small compared with other pertinent dimensions.

Two or more forces may act upon an object without affecting its state of motion.  For example, a
book resting upon a table has a downward force acting on it caused by gravity and an upward force
exerted on it from the table top.  These two forces cancel and the net force of the book is zero.
This fact can be verified by observing that no change in the state of motion has occurred.

Weight

Weight is a special application of the concept of force.  It is defined as the force exerted on an
object by the gravitational field of the earth, or more specifically the pull of the earth on the body.

(4-2)

where:

W = weight (lbf)
m = mass (lbm) of the object
g = the local acceleration of gravity (32.17 ft/sec )2

g = a conversion constant employed to facilitate the use of Newton's second law ofc

motion with the English system of units and is equal to 32.17 ft-lbm/lbf-sec2

Note that g  has the same numerical value as the acceleration of gravity at sea level.c



W '

mg
gc

'

(185 lbm) 32.17 ft

sec2

32.17 ft&lbm

lbf&sec2

' 185 lbf

W '

mg
gc

'

(185 lbm) 5.36
ft

sec2

32.17
ft&lbm

lbf&sec2

' 28.19 lbf
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The mass of a body is the same wherever the body is, whether on the moon or on the earth.  The
weight of a body, however, depends upon the local acceleration of gravity.  Thus, the weight of an
object is less on the moon than on the earth because the local acceleration of gravity is less on the
moon than on the earth.

Example:

Calculate the weight of a person with a mass of 185 lbm.

Example:

Calculate the weight of a person with a mass of 185 lbm on the moon.  Gravity on
the moon is 5.36 ft/sec .2
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Force and Weight Summary

C Force is a vector quantity that tends to produce an acceleration of a body
in the direction of its application.

or

F = ma

C Weight is the force exerted on an object due to gravity.  (On the earth it is
the gravitational pull of the earth on the body.)

W = mg/gc

With the idea of mass and weight understood, especially their differences, the concept of
gravitational force is more easily explained.  Any object that is dropped will accelerate as it falls,
even though it is not in physical contact with any other body.  To explain this, the idea of
gravitational force was developed, resulting in the concept that one body, such as the earth, exerts
a force on another body, even though they are far apart.  The gravitational attraction of two objects
depends upon the mass of each and the distance between them.  This concept is known as Newton's
law of gravitation, which was introduced in an earlier chapter.

Summary

The important concepts of force and weight are summarized below.
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FREE-BODY DIAGRAMS

In studying the effect of forces on a body it is necessary to isolate the body and
determine all forces acting upon it.  This method of using a free-body diagram is
essential in understanding basic and complex force problems.

EO 1.2 STATE the purpose of a free-body
diagram.

EO 1.3 Given all necessary information, CONSTRUCT a
free-body diagram.

In solving a problem involving forces it is essential that Newton's laws are carefully fixed in
mind and that these principles are applied literally and exactly.  In applying these principles
it is essential that the body be isolated from all other bodies so that a complete and accurate
account of all forces which act on this body may be considered.  The diagram of such an
isolated body with the representation of all external forces acting on it is called a Free-Body
Diagram.  It has long been established that the free-body-diagram method is the key to the
understanding of engineering problems.  This is because the isolation of a body is the tool that
clearly separates cause and effect and focuses our attention to the literal application of a
principle.

Example:

Consider the book resting on the table in Figure 1.  Although the book is
stationary, two forces are acting on the book to keep it stationary.  One is the
weight (W) of the book exerting a force down on the table.  The other is the
force exerted up by the table to hold the book in place.  This force is known
as the normal force (N) and is equal to the weight of the book.  A normal
force is defined as any perpendicular force with which any two surfaces are
pressed against each other.  The free-body diagram for this situation,
illustrated on the right side in Figure 1, isolates the book and presents the
forces acting on the object.
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Figure 1   Book on a Table

Constructing a Free-Body Diagram

In constructing a free-body diagram the following steps are usually followed.

Step 1. Determine which body or combination of bodies is to be isolated.  The body
chosen will usually involve one or more of the desired unknown quantities.

Step 2. Next, isolate the body or combination of bodies chosen with a diagram that
represents its complete external boundaries.

Step 3. Represent all forces that act on the isolated body as applied by the removed
contacting and attracting bodies in their proper positions in the diagram of the
isolated body.  Do not show the forces that the object exerts on anything else,
since these forces do not affect the object itself.

Step 4. Indicate the choice of coordinate axes directly on the diagram.  Pertinent
dimensions may also be represented for convenience.  Note, however, that the
free-body diagram serves the purpose of focusing accurate attention on the
action of the external forces; therefore, the diagram should not be cluttered
with excessive information.  Force arrows should be clearly distinguished from
other arrows to avoid confusion.  For this purpose colored pencils may be
used.
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Figure 2   Car

When these steps are completed a correct free-body diagram will result, and the student can
apply the appropriate equations to the diagram to find the proper solution.  

Example:

The car in Figure 2 is being towed by a force of some magnitude.  Construct
a free-body diagram showing all the forces acting on the car.

Solution:

Following the steps to construct a free-body diagram (shown in Figure 3), the
object (the car) is chosen and isolated.  All the forces acting on the car are
represented with proper coordinate axes.  Those forces are:

F - The force applied to tow the carapp

F - The frictional force that opposes the applied force due to theK

weight of the car and the nature of the surfaces (the car's tires
and the road)

W - The weight of the car
N - The normal force exerted by the road on the car



FREE-BODY DIAGRAMS Application of Newton's Laws

CP-04 Page 8 Rev. 0

Figure 3   Free-Body Diagram

The frictional force (F ) is a force that opposes the direction of motion.  This force isK

explained in more detail in the chapter on types of forces.

To solve this practical problem, the student would assign values for each force as determined
by data given in the problem.  After assigning a sign convention (e.g., + for forces upward and
to the right, - for forces downward and to the left), the student would sum all forces to find
the net force acting on the body.  Using this net force information and appropriate equations,
the student could solve for the requested unknowns.  A variation would be to have the
student find an unknown force acting on the body given sufficient information about the other
forces acting on the body.  The student will learn to solve specific examples using free-body
diagrams in a later chapter.

Some advanced free-body diagrams for various types of systems are shown in Figure 4.
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Figure 4   Various Free-Body Diagrams
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Free-Body Diagram Summary

C A free-body diagram isolates a body and illustrates all the forces that act on the body
so that a complete and accurate account of all of those forces may be considered.

C Four steps must be performed to construct a free-body diagram:

- Determine the body or combination of bodies to be isolated.

- Isolate the body or combination of bodies with a diagram that represents the
complete external boundaries.

- Represent all forces that act on the isolated body in their proper positions
within the diagram.

- Indicate the choice of coordinate axes directly on the diagram.

Summary

The concept of the free-body diagram is summarized below.
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FORCE EQUILIBRIUM

Knowledge of the forces required to maintain an object in equilibrium is essential in
understanding the nature of bodies at rest and in motion.

EO 1.4 STATE the conditions necessary for a body to
be in force equilibrium.

EO 1.5 DEFINE the following:
a. Net force
b. Equilibrant

Net Force

When forces act on an object, the result may be a change in the object's state of motion.  If
certain conditions are satisfied, however, the forces may combine to maintain a state of
equilibrium or balance.

To determine if a body is in equilibrium, the overall effect of all the forces acting on it must be
assessed.  All the forces that act on an object result in essentially one force that influences the
object's motion.  The force which results from all the forces acting on a body is defined as the
net force.  It is important to remember that forces are vector quantities.  When analyzing
various forces you must account for both the magnitude (displacement) of the force as well as
the direction in which the force is applied.  As described in the previous chapter, this is best
done using a free-body diagram.

To  understand  this  more  clearly,  consider the book resting on the table in section A of
Figure 5.
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Figure 5   Net Force

The book remains stationary resting on the table because the table exerts a normal force upward
equal to the weight of the book.  Therefore, the net force on the book is zero.  If a force is
applied to the book (section B of Figure 5), and the effect of friction is neglected, the net force
will be equal to the applied force, and the book will move in the direction of the applied force.
The free-body diagram in section C of Figure 5 shows that the weight (W) of the book is
canceled by the normal force (N) of the table since they are equal in magnitude but opposite in
direction.  The resultant (net) force is therefore equal to the applied force (F ).APP

Equilibrium

Since an object in equilibrium is considered to be in a state of balance, it can be surmised that
the net force on the object is equal to zero.  That is, if the vector sum of all the forces acting
on an object is equal to zero, then the object is in equilibrium.

Newton's first law of motion describes equilibrium and the effect of force on a body that is in
equilibrium.  That law states "An object remains at rest (if originally at rest) or moves in a
straight line with a constant velocity if the net force on it is zero."  Newton's first law of motion
is also called the law of inertia.  Inertia is the tendency of a body to resist a change in its state
of motion.



F1 % F2 % F3 ' 0
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Figure 6   Hanging Object

The first condition of equilibrium, a consequence of Newton's first law, may be written in
vector form, "A body will be in translational equilibrium if and only if the vector sum of forces
exerted on a body by the environment equals zero."

For example, if three forces act on a body it is necessary for the following to be true for the
body to be in equilibrium.

(4-3)

This equation may also be written as follows.

(4-4)

This sum includes all forces exerted on the body by its environment.  The vanishing of this
vector sum is a necessary condition, called the first condition of equilibrium, that must be
satisfied in order to ensure translational equilibrium.  In three dimensions (x,y,z), the component
equations of the first condition of equilibrium are:

(4-5)

This condition applies to objects in motion with constant velocity and to bodies at rest or in
static equilibrium (referred to as STATICS).

Applying the knowledge that an object in equilibrium has a net force equal to zero, the
following example can be solved:

Example:

The object in Figure 6 has a
weight of 125 lbf.  The object
is suspended by cables as
shown.  Calculate the tension
(T ) in the cable at 30E with1

the horizontal.



'Fx ' T1x
% T2x

% T3x
' 0

'Fy ' T1y
% T2y

% T3y
' 0

'Fy ' (T1 sin30E) % (T2 sin180E) % (T3 sin270E) ' 0
(T1)(0.5) % (T2)(0) % (125 lbf)(&1) ' 0

0.5T1 & 125 lbf ' 0
0.5T1 ' 125 lbf

T1 ' 250 lbf
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Figure 7   Free-Body Diagram

The tension in a cable is the force transmitted by the cable.  The tension at any point in the cable
can be measured by cutting a suitable length from it and inserting a spring scale.

Solution:
Since the object and its supporting cables are motionless (i.e., in equilibrium), we know
that the net force acting on the intersection of the cables is zero.  The fact that the net
force is zero tells us that the sum of the x-components of T , T , and T  is zero, and the1 2 3

sum of the y-components of T , T , and T  is zero.1 2 3

The tension T  is equal to the weight of the object, 125 lbf.  The x and y components of the3

tensions can be found using trigonometry (e.g., sine function).  Substituting known values into the
second equation above yields the following.

A simpler method to solve this problem involves assigning a sign convention to the free-body
diagram and examining the direction of the forces.



j F
y
' (T

1
sin 30 E) & 125 lbf ' 0

0.5 T
1
' 125 lbf

T
1
' 250 lbf

j Forces' F1 % F2 % N % W ' 0
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Figure 8   Free-Body Diagram

By choosing (+) as the upward direction and (-) as the downward direction, the student can
determine by examination that 1) the upward component of T  is + T  sin 30 , 2) the tension T1 1 3

o

is -125 lbf, and 3) T  has no y- component.  Therefore, using the same equation as before, we2

obtain the following.

If the sum of all forces acting upon a body is equal to zero, that body is said to be in force
equilibrium.  If the sum of all the forces is not equal to zero, any force or system of forces capable
of balancing the system is defined as an equilibrant.

Example:

A 2000 lbm car is accelerating (on a frictionless surface) at a rate of 2 ft-sec.  What force
must be applied to the car to act as an equilibrant for this system?

Solution: a. Draw a free-body diagram.

b. A Force, F , MUST be applied in the opposite direction to F  such that the2 1

sum of all forces acting on the car is zero.



F2 ' F1 '
ma
gc

' (2000 lbm × 2ft&sec2) ÷ 32.17
ft&lbm

lbf&sec2

' 124 lbf
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Force Equilibrium Summary

C The force that is the resultant force of all forces acting on a body is defined as
the net force.

C If the vector sum of all the forces acting on an object is equal to zero, then the
object is in equilibrium.

C The first condition of equilibrium is stated as follows: "A body will be in
translational equilibrium if and only if the vector sum of forces exerted on a
body by the environment equals zero."

F  + F  + F  = 01 2 3

or
'F = 0

C Any force or system of forces capable of balancing a system so that the net
force is zero is defined as an equilibrant.

c. Since the car remains on the surface, forces N and W are in equal and
opposite directions.  Force F  must be applied in an equal and opposite2

direction to F  in order for the forces to be in equilibrium.1

Summary

The concepts presented in this chapter are summarized below.
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TYPES OF FORCE

When determining how an object reacts to a force or forces, it is important to
understand the different types of forces that may act on the object.

EO 1.6 DEFINE the following:
a. Tensile force
b. Compressive force
c. Frictional force

EO 1.7 EXPLAIN the difference between a static-friction force and a
kinetic-friction force.

EO 1.8 STATE two factors that affect the magnitude of the friction force.

EO 1.9 EXPLAIN the difference between centripetal force and
centrifugal force.

The previous section discussed the equilibrium of forces as they act on bodies.  Recalling that
a force is defined as a vector quantity that tends to produce an acceleration of a body in the
direction of its application, it is apparent that the student must be acquainted with the various
types of forces that exist in order to construct a correct free-body diagram and apply the
appropriate equation.  A force is applied either by direct mechanical contact or by remote action.

Tensile and Compressive Forces

In discussing the types of forces, a simple rule is used to determine if the force is a tensile or a
compressive force.  If an applied force on a member tends to pull the member apart, it is said to
be in tension.  If a force tends to compress the member, it is in compression.  It should also be
mentioned that ropes, cables, etc., that are attached to bodies can only support tensile loads, and
therefore such objects are in tension when placed on the free-body diagram.  In addition, when
a fluid is involved, it should be understood that fluid forces are almost always compressive
forces.

Friction

Another type of force often used in classical physics is the force resulting from two surfaces in
contact, where one of the surfaces is attempting to move parallel to or over the other surface.
Such forces are referred to as friction forces.  There are two types of friction forces: those due
to dry friction, sometimes called Coulomb friction, and those resulting from fluid friction.
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Figure 9   Frictional Forces

Fluid friction develops between layers of fluid moving at different velocities.  This type of frictional
force is used in considering problems involving the flow of fluids through pipes.  Such problems are
covered in the Fundamentals Manual on fluid flow.  In this section, problems involving rigid bodies
which are in contact along dry surfaces are considered.

The laws of dry friction are best understood by the following experiment.  A block of weight W is
placed on a horizontal plane surface (see Figure 9).  The forces acting on the block are its weight
W and the normal force N of the surface.  Since the weight has no horizontal component, the normal
force of the surface also has no horizontal component; the reaction is therefore normal to the surface
and is represented by N in part (a) of the figure.  Suppose now, that a horizontal force P is applied
to the block (see part (b)).  If P is small, the block will not move.  Some other horizontal force must
therefore exist which balances P.  This other force is the static-friction force F, which is actually the
resultant of a great number of forces acting over the entire surface of contact between the block and
the plane.  The nature of these forces is not known exactly, but it is generally assumed that these
forces are due to the irregularities of the surfaces in contact and also to molecular action.

If the force P is increased, the friction force F also increases, continuing to oppose P, until its
magnitude reaches a certain maximum value F  (see part (c) of Figure 9).  If P is further increased,M

the friction force cannot balance it any more, and the block starts sliding.  As soon as the block has
been set in motion, the magnitude of F drops from F  to a lower value F .  This is because there isM K

less interpenetration between the irregularities of the surfaces in contact when these surfaces move
with respect to one another.  From then on, the block keeps sliding with increasing velocity (i.e., it
accelerates) while the friction force, denoted by F  and called the kinetic-friction force, remainsK

approximately constant.
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Figure 10   Centripetal Force

Experimental evidence shows that the maximum value F  of the static-friction force isM

proportional to the normal component N of the reaction of the surface, as shown in Equation
4-5.

(4-5)

The term µ  is a constant called the coefficient of static friction.  Similarly, the magnitude F  ofs K

the kinetic-friction force may be expressed in the following form.

(4-6)

The term µ  is a constant called the coefficient of kinetic friction.  The coefficients of friction,K

µ  and µ , do not depend upon the area of the surfaces in contact.  Both coefficients, however,S K

depend strongly on the nature of the surfaces in contact.  Since they also depend upon the exact
condition of the surfaces, their value is seldom known with an accuracy greater than 5 percent.
It should be noted that frictional forces are always opposite in direction to the motion (or
impending motion) of the object.

Centripetal Force

An object moving at constant speed in a circle
is not in equilibrium.  Although the magnitude
of the linear velocity is not changing, the
direction of velocity is continually changing.
Since a change in direction requires
acceleration, an object moving in a circular
path has a constant acceleration towards the
center of the circular path.

Recalling Newton's second law of motion, F =
ma, a force is required to cause acceleration.
Therefore, to have constant acceleration towards
the center of the circular path, there must be a net
force acting towards the center.  This force is
known as centripetal force.  Without this force, an
object will move in a straight line.  Figure 10
illustrates the centripetal force.
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Figure 11   Centrifugal Force

Figure 12   Loss of Centripetal Force

Centrifugal Force

Another force, which appears
to be opposite the direction of
motion, is the centrifugal force
acting on an object that follows
a curved path.  This force
appears to be a force directed
away from the center of the
circular path.  This is actually a
fictitious force, but is an
apparent force that is used to
describe the forces present due
to an object's rotation.

To better understand
centripetal and centrifugal
forces, consider that a string is
attached to the plane in Figure
10.  As the plane rotates about the center, the string places a centripetal force on the plane.  This
causes the plane's velocity to change in direction, thus causing it to travel in a circle.

The apparent outward force,
centrifugal force, seems to pull
the plane away from the center
shown in Figure 11.  This is the
same apparent outward force
one feels when riding in a car
when the car travels in a circle.
It can be proven that
centrifugal force is not an
actual force by cutting the
string.  In doing so, the plane
will fly off in a straight line that
is tangent to the circle at the
velocity it had the moment the
string was cut. If there were an
actual centrifugal force present,
the plane would not fly away in
a line tangent to the circle, but
would fly directly away from
the circle (see Figure 12).



Application of Newton's Laws TYPES OF FORCE

Rev. 0 Page 21 CP-04

Types of Force Summary

C A tensile force is an applied force that tends to pull an object apart.

C A compressive force is an applied force that tends to compress an object.

C Frictional force is the force resulting from two surfaces in contact, where one of
the surfaces is attempting to move with respect to the other surface.

C Static-frictional forces are those frictional forces present when an object is
stationary, whereas kinetic-frictional forces are those frictional forces present
between two objects that are moving.

C The magnitude of the frictional force is affected by the following:

- Weight of the object being moved 

- Type of surface on the object being moved

- Type of surface on which the object is moving.

C Centripetal force is the force on an object moving in a circular path that is
directed towards the center of the path, whereas the centrifugal force is the
fictitious force that appears to be directed away from the center of the circular
path.

Summary

The concepts of this chapter are summarized below.
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TERMINAL OBJECTIVE

1.0 Given necessary information about a system, CALCULATE  the work performed
and/or power produced or used by that system.

ENABLING OBJECTIVES

1.1 DEFINE  the following terms:
a. Energy
b. Potential energy
c. Kinetic energy
d. Work
e. Power

1.2 STATE the mathematical expression for:
a. Potential energy
b. Kinetic energy
c. Work
d. Power

1.3 For a mechanical system, CALCULATE  energy, work, and power.

1.4 STATE the First Law of Thermodynamics, "Conservation of Energy."
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ENERGY AND WORK

Energy is the measure of the ability to do work or cause a change.  Work is a
measure of the amount of energy required to move an object.

EO 1.1 DEFINE the following terms:
a. Energy
b. Potential energy
c. Kinetic energy
d. Work

EO 1.2 STATE the mathematical expression for:
a. Potential energy
b. Kinetic energy
c. Work

EO 1.3 For a mechanical system, CALCULATE energy, work, and
power.

Energy

Energy is defined as the measure of the ability to do work.  Energy determines the capacity of
a system to perform work and may be stored in various forms.  Some of the more basic
mechanical systems involve the concepts of potential and kinetic energy.  Both of these terms
will be explained more fully later in this chapter.  More advanced systems may include other
types of energy such as chemical, electromagnetic, thermal, acoustic, and nuclear.  A piledriver
hammer performs work by virtue of its falling motion.  Coal burned in a fossil-fueled power
plant is undergoing energy release by a chemical reaction.  Fuel elements in a nuclear power
reactor produce energy by a nuclear reaction.  For the purposes of this course, our discussions
will be limited to mechanical and thermal forms of energy (e.g., heat).  It should be noted,
however, that the principles involved with energy calculations are similar for all types of energy.

Both thermal and mechanical energy can be separated into two categories, transient and stored.
Transient energy is energy in motion, that is, energy being transferred from one place to
another.  Stored energy is the energy contained within a substance or object.  Both of these
categories of energy will be discussed in this module.

Potential Energy

Potential energy is defined as the energy stored in an object because of its position. An example
is the potential energy of an object above the surface of the earth in the earth's gravitational
field.  Potential energy also applies to energy due to separation of electrical charge and to
energy stored in a spring, in other words, energy due to position of any force field.
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As an example, consider the energy stored in hydrogen and oxygen as potential energy to be
released on burning.  Burning changes their relative separation distance from the elemental form
to the compound form as water releases the potential energy.

When discussing mechanical potential energy, we look at the position of an object.  The
measure of an object's position is its vertical distance above a reference point.  The reference
point is normally the earth's surface, but can it be any point.  The potential energy of the object
represents the work required to elevate the object to that position from the reference point.
Potential energy is mathematically represented by Equation 5-1.

PE = work to elevate = weight x height (5-1)

where:

PE = potential energy in ft-lbf
m = mass in lbm
g = 32.17 ft/sec2

g = 32.17 (lbm-ft)/(lbf-sec )c
2

z = height above a reference in ft

It should be noted the g  is used only when using the English system of measurement.c

Example: What is the potential energy of a 50 lbm object suspended 10 feet above the
ground?

Answer: PE = 500 ft-lbf

Kinetic Energy

Kinetic energy is defined as the energy stored in an object because of its motion.  If you have
a baseball in your hand, it has no kinetic energy because it is not moving.  But if you throw the
ball, your hand has provided energy to give the ball motion. When you release the ball, it leaves
your hand at some velocity.  The energy you have given the ball will determine the velocity of
the ball.  Because the kinetic energy is due to the motion of the object, and motion is measured
by velocity, kinetic energy can be calculated in terms of its velocity, as shown below.

(5-2)
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where:

KE = kinetic energy in ft-lbf
m = mass in lbm
v = velocity in ft/sec
g = (32.17 lbm-ft)/(lbf-sec )c

2

Example: What is the kinetic energy of a 10 lbm object that has a velocity of 8 ft/sec?

Answer: KE = 9.95 ft-lbf

The kinetic energy of an object represents the amount of energy required to increase the
velocity of the object from rest (v = 0) to its final velocity, or the work it can do as it pushes
against something in slowing down (waterwheel or turbine, for example.)

Thermal Energy

Thermal energy is that energy related to temperature (the higher the temperature, the greater
the molecular movement, and the greater the energy).  If one object has more thermal energy
than an adjacent substance, the substance at the higher temperature will transfer thermal energy
(at a molecular level) to the other substance.  Note that the energy is moving from one place
to another (it is in motion) and is referred to as transient energy or, more commonly in the case
of thermal energy, heat.

The only stored energy in a solid material is internal energy.  Internal energy is the energy
stored in a substance because of the motion and position of the particles of the substance.  Heat
and internal energy will be covered in the Fundamentals Manual on Heat Transfer, Fluid Flow,
and Thermodynamics.

Mechanical Energy

Mechanical energy is energy related to motion or position.  Transient mechanical energy is
commonly referred to as work. Stored mechanical energy exists in one of two forms: kinetic
or potential.  Kinetic and potential energy can be found in both fluids and solid objects.
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Work

Work is commonly thought of as any activity requiring exertion.  However, the definition in
physics is much more specific.  Work is done by a force acting on a moving object if the object
has some component of motion in the direction of the force.  Work can be done BY a person,
a machine, or an object by applying a force and causing something to move.  More specifically,
work is done by a force acting on a moving object if the object has some component of motion
in the direction of the force.  Work can be done ON an object by applying a force that causes
it to move.  For example, if you push on a box (apply a force) and it moves three feet, work has
been performed BY you to the box, while work has been performed ON the box.  If you push
on the box and it does not move, then work, by our definition, has not been accomplished.
Work can be defined mathematically by Equation 5-3.

W = F x d (5-3)

where:

W = work done in ft-lbf
F = force applied to the object in lbf
d = distance the object is moved (in ft.) with the force applied

Example: You push a large box for three minutes.  During that time, you exert a constant
force of 200 lbf to the box, but it does not move.  How much work has been
accomplished?

W = F x d
W = 200 lbf x 0 ft
W = 0 ft-lbf work done

Remember that if no movement is achieved, no work has been accomplished.  Even if you feel
fatigued, no work has been done.  Work can be thought of as what has been accomplished.  If
nothing is accomplished, then no work has been done.

Example: You push the same box as mentioned above.  You apply a horizontal force of
200 lbf to the box, and the box moves five feet horizontally.  How much work
have you done?

W = F x d
W = 200 lbf x 5 ft
W = 1000 ft-lbf

In this case, work can be described as work done by the person pushing the box or work
performed on the box.  In either case, the amount of work is the same.
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Summary

The main points covered in this chapter are summarized below.

Energy and Work Summary

C Energy is the ability to do work.

C The work done by a force on an object is the product of the force and the
distance the object moves in the direction of the force.

C Kinetic energy is the energy an object has because of its motion.

C or  KE = 

C Potential energy is the energy of an object due to its position.

C
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LAW OF CONSERVATION OF ENERGY

Energy does not simply appear and disappear.  Energy is transferred from one position
to another or transformed from one type of energy to another.

EO 1.4 STATE the First Law of Thermodynamics, "Conservation
of Energy."

Conservation of Energy

The First Law of Thermodynamics is simply stated "energy cannot be created or destroyed, only
altered in form."  In the previous chapter, we discussed potential energy, where a force is applied
to an object, raising it from some point of origin to some height.  The energy expended in raising
the object is equivalent to the potential energy gained by the object because of its height.  This
is an example of a transfer of energy as well as an alteration of the type of energy.  Another
example is throwing a baseball.  While the ball is in your hand, it contains no kinetic energy.
You apply a force to the ball by throwing it.  The ball leaves your hand with a velocity, giving
it kinetic energy equal to the work applied by your hand.  Mathematically, this can be described
by the following simplified equation.

Energy  + Energy  - Energy  = Energy  (5-4)initial added removed final

where:

Energy  is energy initially stored in an object/substance.  This energy can exist ininitial

various combinations of kinetic energy and potential energy.

Energy  is energy added to the object/substance.  Heat can be added.  Energy can beadded

added in the form of stored energy in any mass added, such as water to a fluid system.
Work can be done on a system.  Heat is energy gained or lost at a microscopic level.
Work is the same at a macroscopic level.

Energy  is energy removed from an object/substance.  Heat can be rejected.  Workremoved

can be done by the system.  This energy can be in the form of energy stored in any mass
removed.

Energy  is energy remaining within the object/substance after all energy transfers andfinal

transformations occur.  This energy can exist in various combinations of kinetic,
potential, flow, and internal energy.
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Conservation of Energy Summary

C Energy cannot be created or destroyed, only altered in form.

C Simplified energy balance:

KE  + PE  + E  = KE  + PE  + E1 1 added 2 2 removed

To further describe each of the components of the above equation, each component can be
broken down as follows:

Energy = KE  + PEinitial 1 1

Energy = Work done on and heat added to the systemadded

Energy = Work done by and heat removed from the systemremoved

Energy = KE  + PEfinal 2 2

The resulting energy balance is provided in Equation 5-5.

KE  + PE  + E  - E  = KE  + PE (5-5)1 1 added removed 2 2

Neglecting any heat removed or added to a system, we can replace E  and E  inadded removed

Equation 5-5 with their associated work terms to obtain Equation 5-6.

KE  + PE  + W  = KE  + PE  + W (5-6)1 1 on 2 2 by

The final energy balance is called a "simplified energy balance."  Any energy balance is a
statement of the Law of Conservation of Energy.  In this simplified form, the balance applies
only to mechanical problems, since we neglected heat.  However, more specific energy balances
that include heat will be discussed in other Fundamental Manuals.  For example, specific energy
balances for flow systems will be discussed in the Heat Transfer, Fluid Flow, and
Thermodynamics modules.

Summary

The law of conservation of energy is summarized below.
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POWER

Power is a measure of the rate at which energy is used.  Thermal power is the term
used to refer to the transfer of heat.  Mechanical power is the term used to describe
when work is being done.

EO 1.1 DEFINE the following terms:
e. Power

EO 1.2 STATE the mathematical expression for:
d. Power 

EO 1.3 For a mechanical system, CALCULATE energy, work, and
power.

Power

Power is defined as the amount of energy used per unit time or rate of doing work.  It has the units
of watt, Btu, horsepower, or ft-lbf/sec.

Thermal Power

Thermal power is the measure of thermal energy used per unit time.  It is the rate of heat transfer
or heat flow rate.  Examples of thermal power units are British Thermal Units (Btu) or kilowatts
(Kw).  Thermal power is calculated basically by the mathematical expression of:

Thermal energy and calculations of thermal power will be covered in more detail in the Fundamentals
Manual for Heat Transfer, Fluid Flow, and Thermodynamics.
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Mechanical Power

Mechanical energy used per unit time is called mechanical power.  Mechanical power is the rate at
which work is done.  Mechanical power is expressed in units of joules/sec (joules/s) or a watt (W)
in the mks system, and feet - pounds force per second (ft-lbf/s) or horsepower (hp) in the English
system.  Mechanical power can be calculated using the following mathematical expression.

Because work can be defined as force times distance, we can also use the following equation: 

(5-6)

where:

P = Power (W or ft-lbf/s)
F = Force (N or lbf)
d = distance (m or ft)
t = time (sec)

One horsepower is equivalent to 550 ft-lbf/s and 745.7 watts.  Because in the equation above d
divided by t is the same as velocity, an alternate description of power is as follows.

(5-7)

where:

P = power (hp)
F = force (lbf)
v = velocity (ft/s)

When using equations 5-6 or 5-7, you must either assume force and velocity are constant or that
average values of the force and velocity are used.
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Example 1: A pump provides a flow rate of 10,000 gpm.  The pump does 1.5 x 10  ft-lbf of work8

every 100 minutes.  What is the power of the pump in hp?

Example 2: A boy rolls a ball with a steady force of 1 lbf, giving the ball a constant velocity of 5
ft/s.  What is the power used by the boy in rolling the ball?



P '

Fd
t

P '

(1890 lbf)(1455 ft)
5 sec

1 hp
550 ft&lbf/sec

P ' 1000 hp

P '

Fv
550

P '

(1890 lbf)(291 ft/sec)
550

P ' 1000 hp

Power' work done
time required
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Example 3: A race car traveling at constant velocity can go one quarter mile (1455 ft) in 5
seconds.  If the motor is generating a force of 1890 lbf pushing the car, what is the
power of the motor in hp?  Assume the car is already at full speed at t=0.

or

Summary

The main points of this chapter are summarized below.

Power Summary

C Power is the amount of energy used per unit time.

C


